Skip to content

?

단축키

Prev이전 문서

Next다음 문서

크게 작게 위로 아래로 댓글로 가기 인쇄 첨부 수정 삭제
?

단축키

Prev이전 문서

Next다음 문서

크게 작게 위로 아래로 댓글로 가기 인쇄 첨부 수정 삭제


물속 동전 떠보기를 기하학적 풀이 사례 정리

요 아래 황교수님 동전 떠보기의 보완 설명입니다. 지난 주에는 제가 지독한 감기몸살로 고생을 좀 했습니다만 토요일 문병화씨를 따라 천문인마을로 별을 보고 와서 씻은 듯이 나았습니다. 그래서 오늘은 추운 베란다로 나가서 물리에 관계되는 여러 책을 찾아서 펼쳤습니다. 지난 주에는 베란다에 나갈려고 생각도 안했지요. 동전 떠보기를 도형으로 풀이한 사례 2건을 찾았습니다. 도형 동전 떠보기 정리의 의미에서 소개합니다.

안타깝게도 저는 국내 교재를 가지고 있지 않습니다. 호준님이 가지고 계시다면 한번 비교해보십시요. 제 생각은 황교수님 말씀처럼 우리 책이 그 뉘앙스에서 약간 혼란을 가져오도록 기술한 곳이 있을 가능성이 있다고 생각합니다. 저는 그런 실례를 겪었기 때문에 잘 압니다. 과거 대학 교양화학책을 구입했는데 책은 500페이지 가량으로 두꺼웠습니다만 전지편을 보다가 용어에서부터 헷갈리게 적어놔서 짜증이 나서 던져버렸습니다. 그 기분 안 당해 본 사람은 모르지요. 표준전위부터 헷갈리기 시작하니 죽겠습디다. 정말 책 적는 사람은 방대한 이론과 경험을 바탕으로 단어 하나하나에도 촌철살인(寸鐵殺人)의 정신으로 집중하여 고객에게 전달하는다는 심정으로 적어야합니다. 제가 떠보이기 예제 그림으로 올린 캐드 그림은 렌즈 연구자인 토우쿠대학교 명예교수인 요시다 쇼타로씨가 적은 광학기기대전에서 인용했는데, 요시타씨는 이 교재의 머리말에서 인용된 그림 모두는 실제 설계에서 사용된 공학적인 자료를 그대로 인용했다고 적고 있습니다. 과학에서 정확성은 아주 중요하지요.
.....................................

그럼 설명들어갑니다. 일단 황교수님의 수식에 의한 풀이 방법은 확실하다고 생각합니다. 계산과정에서 원초적인 실수를 제외한다면 말이지요. 계산 과정에서 실수의 가능성은 두직선의 교점을 구하는 방정식 하나뿐인데(나머지는 복잡하지 않고 설명되어 있으므로 통과!) 이게 복잡하긴 하지만 황교수님께서 실수하실 가능성은 거의 없을겁니다.. 답이 바르게 나왔고 수학교수님이라서 더욱더 실수가 없겠지요. 저도 교점을 한번 구해보려고 계산하다가 복잡해서 그만두었는데 황교수님께서는 행열로 푸신지도 모르겠습니다.  

윗 그림 예제 1, 2는 그림 모양은 같지만 적용하는 논리는 완전히 다릅니다.

예제 1은 동전의 상 맺히는 점이 B점이라고 고정하는 것이 아닙니다. 그냥 직선 AE와 수직선이 만나는 B점 부근에서 상이 맺힐 것이다라는 것을 ‘예상’하고 풀이하는 것입니다. 그러므로 A, O 점에서 수직선은 평행선이므로 그 아래식이 성립합니다. 이 때 눈을 수직선으로 이동하면 그 아래 아래식이 성립하고 최종식은 OB~=h/n이 나오게 됩니다. 그런데 이게 알고보니 떠보이기 위치가 될 수밖에 없다 이런 방법의 추리입니다. 수학에서 이런 것이 가능한지는 모르겠군요. 이 때는 OB가 h/n이 된다는 것은 증명할 수는 없고 OB가 h/n에 근사적으로 일치한다는 것만 확인할 수 있습니다. 이럴 때는 굴절각이 미소각이라는 표현을 사용할 필요가 없겠지요. 그냥 임의 각도(전반사가 안 일어나는 범위)에서 작도를 해도 추리가 가능합니다.


예제2는 예제1과 그림은 비슷하나 풀이 방법은 좀 다릅니다. 예제 2에서는 굴절각이 ‘미소각도’라는 단서가 들어갑니다. 이럴 때 A'점에서 상이 맺힌다는 것을 가지고 풀이합니다. 이러면 d=D/n이 성립합니다.

예제1과 2의 차이점이라면 1은 떠보이기 높이 값이 근사적으로 나오는 것이고 2는 그대로 나오는 차이라고 생각합니다. 수학적으로 풀어보면 극한값은 동일하게 나오더라도 기하학적인 풀이에서는 미묘한 차이를 말해주는 것이라 생각합니다. 저도 이 점은 추가로 확인은 어렵군요.  

우리 교과서에서는 어떻게 풀이하고 있는지 궁금합니다.

  • 박병우 2003.12.16 02:59 (*.79.196.171)
    또 오타입니다. 요위의 그림에서 제가 연필로 적은 글 중에서...
    눈의 위치를 P에서 E로 근접시키면-->눈의 위치를 E에서 P점의 수직선 위치 점 Eo로 접근시키면

    *스캔이 잘려서 E와 Eo점이 나와 있지는 않습니다.
  • 추현석 2003.12.16 07:05 (*.242.81.186)
    박병우님,
    참으로 고생 많으셨습니다.
    덕분에 여러가지 생각해보는 기회가 되었고,
    우리집 애들에게도 과학을 어떻게 이용하고 있는지,
    어른들도 물리나 수학적 이론을 활용하고 풀어나가는지 생생한 실례가 되어 주어서 '참공부'하는데,
    좋은 본보기가 되었습니다.
    특히 좋은 광학렌즈를 만들기 위해 빛의 굴절과 분산등,
    교과서에서 배우는것이 어떻게 생활과 산업에서 적용되는지, 무엇때문에 수학을 배워야 하는지 등을
    두분, 박선생님과 황교수님을 통해 좋은 교훈을 얻어 기쁩니다.
    다시 한번 두분의 노고에 감사드립니다.
    앞으로도 좋은 사례를 가지고 활발한 논쟁과 토의가 있기를 기대하겠습니다.
    특히 뢍교수님의 퀴즈는 무척 유용했었습니다.
    비록 제경우 오납을 두번이나 냈고, 그렇지만 평소 생각하지 않고 지냈던 문제들을,
    돌이켜보고 생각하느라 머리에 쥐가 났지만.....
    재미있었습니다.
    덕분에 카메라 감광센스를 놓아야 할 정확한 위치 계산이 훨씬 편하고 정확하게 알게 되었습니다.
    경험에 의한 수치뿐만아니라 수학적 귀납에 의한것이,
    큰 도움이 되었습니다.
    자주 퀴즈 내주시기 바랍니다.
    감사합니다.

자유 게시판

자유롭게 작성해 주세요. 예의는 기본 입니다.

공지 로그인 문제는 즐겨찾기 주소 확인 부탁드립니다. 최승용 2015.04.14
공지 [공지] 게시판 이용방법 *** NADA 2004.08.23
  1. 안산번개

  2. No Image 21Dec
    by 김민수
    2003/12/21 by 김민수
    Views 1526 

    XQ-8

  3. 오늘 관측 나가시는 분 계시나요?

  4. TEC mc200 f15 성상테스트

  5. [re] 물속 동전 떠보기를 기하학적 풀이 사례 정리

  6. 하룻밤에 7행성 프로젝트

  7. 물속 동전 떠보기를 기하학적 풀이 사례 정리

  8. 물속 동전 떠보기에서 허상의 위치를 수학적으로 유도한 결과입니다.

  9. No Image 10Dec
    by 김석현
    2003/12/10 by 김석현
    Views 1373 

    에..저기요..;

  10. 1200GOTO 위의 RC20"

  11. [re] 물속 동전 떠 보이기 깊이 재정리

  12. [re] 물속 동전 떠 보이기 깊이 재정리

  13. 궁금합니다...

  14. 물속 동전 떠 보이기 깊이 재정리

  15. 나다 회원들의 개인 홈페이지

  16. No Image 08Dec
    by 오리온광학
    2003/12/08 by 오리온광학
    Views 1824 

    오리온광학에서 개업1주년 행사를 합니다.

  17. 안산 번개라고 한다면?????

  18. [re] [광학퀴즈 정답발표]

  19. [re] [광학퀴즈] 다함께 참여합시다~~

  20. [re] 돋보기 실상 허상(2)-콜리촬영확대촬영작도

Board Pagination Prev 1 ... 79 80 81 82 83 84 85 86 87 88 ... 99 Next
/ 99

NADA. Network of Amatuer Digital Astrography © Since 2003, All Rights Reserved

Design ver 2.0 / Google Chrome 에 최적화 되어 있습니다.

sketchbook5, 스케치북5

sketchbook5, 스케치북5

나눔글꼴 설치 안내


이 PC에는 나눔글꼴이 설치되어 있지 않습니다.

이 사이트를 나눔글꼴로 보기 위해서는
나눔글꼴을 설치해야 합니다.

설치 취소